
Software Development for the e-Puck Educational Robot :
Coders Guidelines

Julien Hubert

April 18, 2006

1 Introduction

This document is intended for developers willing to create new software for the e-Puck or
modify existing ones. It explains guidelines to ensure the correct assimilation of the new
code inside the existing library.

2 Conventions

The following descriptions are to be followed during the entire project.

Naming The program, either the software or the documentation, should be in English. With
the exceptions of the constants and the new data types or structure, all letters should
be lower-case and the words should be separated with a “_”.

Private Functions read_ad. Those functions are not intended to be used by developers. All
the letters should be lower-case. All the words should be separated by a “_”.

Global Functions e_read_ad. Global functions are to be used by developers. They follow the
same convention as for private functions but there a “e_” added in front.

Global Variable e_global_variable. Global variables can be used by functions external to the
libraries. All the letters should be lower-case and the first letters should be “e_” and
all the words should be separated by a “_”.

Local Variable local_variable. Local variables are variables declared inside functions or de-
clared as static for every function of a module. They follow the same convention as for
global variables but there is no “e_” in front.

Constants/Define PI_CONSTANT. All the letters should be capital letters. All the words
should be separated by a “_”.

Data Types or Structures NewDataStructure. Every word of a new datatype or structure
should start with a capital letter and should not be separated.

3 Debugging

The debugging code should be encapsulated inside define statements.

1

4 DOCUMENTATION 2

4 Documentation

All documentation should be done using Doxygen. Divide each part of the library into
subsections (sound, camera, motors,....)

5 SVN

The svn has three branches :

• Stable which contains a debugged version of the software. It will generally be the
oldest but the more reliable of the branches.

• Unstable which contains a fairly well debugged version of the software. It should be
quite recent but there are no guaranties that it has been totally debugged.

• Experimental which contains the latest development of the software. This branches
contains developers version of the program and is not intended to be used by others
than internal developers of the library.

All the uploads should be done in the experimental branches. When developers feel that the
code is reliable enough, it can be copied in the unstable branch. When the unstable has not
been changed for a few month, the software will be moved to the stable branch. All the bug
should be corrected in the experimental branches and then follow the usual schedule up to
the other branches, with the exception of critical bugs.

Only the following files are authorized to be uploaded :

• Headers (.h .inc)

• Source (.c .s)

• Compiled libraries (.a)

• Programs (.hex)

• Makefiles (*.in *.am Makefile Doxygen) but only when needed

• Project files (*.mcp) but modified to have only relative path for the directories and the
files

No other file extension is allowed.

