elPic2 v2.1 Documentation

Julien Hubert & Yannick Weibel
November 5, 2008

1 Introduction

The ePic2 software is a toolbox to interface Matlab with an e-puck (for additional information
see http://www.e-puck.org). It contains a graphical interface and a set of primitives allowing
to send and receive commands between the e-puck and Matlab. It will be used in the
laboratories of the course Robots Mobiles (http://moodle.epfl.ch/course/view.php?id=261).
The goal of the software is to provide students with the necessary tools to explore the topic
of mobile robotics while focusing on high level behaviors or strategies.

The next section will present the commands to interact with the e-puck available from
the Matlab command line. Following, the graphical interface and its possibilities will be
described.

2 Quickstart

This section intends to give you the quick steps needed to start working with ePic2.

1. epic=ePicKernel; creates a class containing all the variables needed to command the
e-puck

2. epic=connect(epic, COMXX’); will connect epic to an e-puck accessible through the
serial port COMXX

3. epic=update(epic); updates the status of the physical e-puck and of the epic class. It
transfers data from and to the e-puck.

4. epic=disconnect(epic); breaks the connection between the e-puck and Matlab.

3 Matlab Commands

3.1 The ePicKernel class

ePic2 is based on a class containing all the information related to the e-puck. This class
contains the values of the sensors, their rate of update, the commands that should be sent to
the e-puck and the inner parameters of the ePic2 interface.

To act on the e-puck, the class contains a set of functions setting some inner variable
related to its control. Those will be detailed in the following sections.

The class is created by calling epic=ePicKernel;.

http://www.e-puck.org
http://moodle.epfl.ch/course/view.php?id=261

3 MATLAB COMMANDS 2

3.2 Connection to the E-Puck

Before sending commands to the e-puck, the function connect must be called. This function
takes as parameters an instantiation of the class ePicKernel and a string containing the COM
port associated with the e-puck. For instance, epic=connect(epic, COM15’) opens a connection
with the e-puck associated to port COM 15. The command returns a modified instance of the
ePicKernel class. If the connection was successful, the command get(epic, connectionStatus’)
returns 1, otherwise 0.

Once connected, all the interactions will be done with the same robot. It is not possible
to connect to more than one e-puck at a time due to Matlab limitations.

To disconnect, the command epic=disconnect(epic) should be called. Afterward, Matlab
can be connected to another e-puck on another port.

3.3 Sending and Receiving Data

All the interactions with the e-puck, with the exception of the camera, are centralized in one
command epic=update(epic);. This command updates the values of the sensors and sends the
commands to the e-puck.

All the transfers between the e-puck and Matlab are done simultaneously. First, all the
commands are sent to the e-puck. Those can be a request for sensor values or a modification
of the e-puck’s wheel speed. Then, update waits for the reception of the requested information
and updates the variables of the class epic. Please read section 3.4 to learn how to select which
sensor to read and how to control the e-puck.

3.3.1 Unrecommended method

It is also possible to send custom commands to the e-puck using the low level functions to
send and receive data. Those exist either in ASCII or in binary but their usage is the same.
The difference resides in the way the data are encoded. In ASCII mode, the data sent by the
e-puck are formatted as a string. The Matlab command str2num has to be called to convert
those into a Matlab variable. In binary mode, the data are formatted as they were on the
e-puck and spread over different bytes. It is then necessary to reformat the values into their
original format. This is generally more difficult to do as it requires a knowledge of the inner
programming of the e-puck. The binary mode is nevertheless more advantageous when
multiple commands have to be sent simultaneously. In ASCII mode, all commands are sent
separately on the bluetooth channel while in binary the are all sent with one transfer only.
This has the effect of speeding up the transfers between the e-puck and Matlab.

Sending a custom command is done through the functions write(epic,data); or
writeBin(epic,data); where data contains the commands to send. The first function uses the
ASCII mode while the second the binary mode. Those commands are asynchronous and
won't wait for the answer of the e-puck. To receive the result of the sent command, the func-
tions data=read(epic); or data=readBin(epic); have to be called according to the type of writing
you did previously. An alternate command to read binary data is data=readBinSized(epic,n);
where 1 is the size in bytes of the data to be transfered. The function will wait until all the
data has been received or for a timeout to occur.

The final command to know is flush(epic); which resets the transmission and reception
buffer of Matlab. It is useful to call before any communication with the e-puck as Matlab

3 MATLAB COMMANDS 3

does not seem to do it by itself. If not called, there are risks that old information will remain
in the buffers.

3.4 Commanding the e-puck

As mentioned earlier, the update command handles all the information transfers between
Matlab and the e-puck. All data sent or received is stored in the class” variables. By default,
ePic2 reads the values of the accelerometer, the proximity sensors, the light sensors, the mi-
crophones, the motor speeds and the encoders. Those correspond to the basic functionalities
of the e-puck.

3.4.1 Gathering information - get

To activate the reading of a sensor, the command epic=activate(epic, propName); must be called
where propName is the name of the sensor to activate. To deactivate a sensor, the command
epic=deactivate(epic, propName); must be used.

A complementary function, epic=updateDef(epic, propName, frequency); allows you to set
the update frequency 0:no update (=desactivate), 1:allways update (=activate), 2:update once
only.

Once the information has been retrieved, it can be obtained with the function
[val,up]=get(epic,propName); where val contains the requested values and up indicates those
were refreshed during the last update.

The following table contains the values for propName and should be used as Matlab
strings.

| propName Data | Supported Commands

accel Accelerometers get, activate, deactivate, updateDef
proxi Proximity Sensors get, activate, deactivate, updateDef
light Light Sensors get, activate, deactivate, updateDef
micro Microphones get, activate, deactivate, updateDef
floor Floor sensors get, activate, deactivate, updateDef
speed Motor Speeds get, activate, deactivate, updateDef
pos Encoders get, activate, deactivate, updateDef
odom Odometry Position get, activate, deactivate, updateDef
external LIS External Sensor Turret | get, activate, deactivate, updateDef
image Camera Image get, activate, deactivate, updateDef
custom Custom Command get, activate, deactivate, updateDef
connectionState | Connection Status get

3.4.1.1 Update image The update function cannot get an image from the camera of the
e-puck. This is due to the long time needed to transfer the image from the robot to the
computer and also to the specific processing done on it. To request an image, the command
[epic, mode, sizexy|=updatelmage(epic); must be called. The returned values mode and sizexy
are respectively the color mode of the camera and the size of the image. Once done, use the
command [image,up]=get(epic,'image’); to retrieve the stored image from the class.

3 MATLAB COMMANDS 4

3.4.1.2 Update odometry ePic2 can compute the odometry of the robot. For that purpose,
the function [epic]=updateOdometry(epic);. As before, the function[pos,up]=get(epic,’odom’);
returns the position of the robot. The function epic=reset(epic,’odom’); will reset the internal
variables of the odometry. The command set can also modify those variables. More details
concerning its use have been given above.

3.4.1.3 Custom commands ePic2 supports the use of custom commands. A custom com-
mand is a vector containing Sercom instructions that will be sent to the e-puck during the
next update. They will be executed at the end of the regular commands. The results can be
retrieved with get(epic,’custom’). Those will be raw data in a 8 bits format. It can be necessary
to convert them to Matlab’s format. Many examples of this can be found in the source code of
the update function and a function two_complement receiving two 8 bits values and returning
their equivalent in 16 bits is provided with ePic2.

3.4.2 Controlling e-puck - set

The command epic=set(epic,varargin); modifies some properties of the e-puck. varargin is a
set of parameters beginning with the name of the property to modify followed by a vector
containing the new values. For instance, to set the speed of the two motors, the command
epic=set(epic,’speed’,[100 100]); must be called. The following table details the supported
properties and their arguments.

| propName | Arguments | Description ‘

speed [right_motor left_motor] Change the motor speeds

ledOn [led_number] Light on the led number led_number

ledOff [led_number] Light off the led number led_number

odom [x y theta] Set the current position used by the
odometry

camMode | [mode] Set the camera mode (0: grayscale,
1:color)

camSize [width height] Set the width and the height of the cam-
era

camZoom | [zoom] Set the zoom factor (1, 4 or 8)

external [options] Select the external sensor and set its
options

ledIR [leds] Set the leds to light on or off for the 5
leds external sensor

custom [commands, bytes to receive] | Set a custom command to be executed
by the e-puck

3.5 The Filters

It is sometimes interesting to apply some processing on the readings of a sensor. For instance,
the calibration of the proximity sensors is necessary to use them. To allow this in a transparent
way, some empty filters have already been created. The functions filter_Accel, filter_Light,
filter_Micro, filter_Floor, filter_Prox and filter_image2 are called every time a reading is done

4 THE GRAPHICAL INTERFACE 5

on respectively the accelerometer, the light sensors, the microphones, the proximity sensors
and the camera. They receive as argument the data and return the filtered values of those.
When no filter is implemented, the returned values are the same as the read values. In case
of the need for a filter, those functions can be rewritten according to the user needs.

4 The Graphical Interface

The graphical interface has been developed to display the status of the e-puck in real-time.
Its programming relies on the above mentioned commands but add some functionalities.
The interface is refreshed on a regular interval and can show the values of the sensors in real
time, it allows to command the movements of the robots using a joystick-like interface, it
displays the camera snapshots before and after filtering and also plot the path of the robot
using odometry. All those can be seen in figure 1.

The interface possesses a menu where sensor readings can be activated or deactivated.

Active sensors Load Workspace Controller function Camera image Filtered image

<) e c{e-Puckin’ _‘ace center) - ¥2.1 =101 x|
. Sensors ‘Workspace

Connection Controller function * —C ,
+ o port detected :I' j ﬂ, ‘ I™ onioff [contraller.m = Browse ¢
— Refresh time [s] Ecit

010 Change/Restart

-—

COM port

[— Mator

% Sensor selection el Left Right
% @ MMAT260 ccelerometer (huit-in) | Speed
© = " .
% Qo Position Height 40 Color ~ Capture
Save buffer size
(O] [—_| — Odometry Wicth 40 SR,
f g
X wm 3] Save images
Save Reset ,—
Y
< Plot Path
5 - Theta Rest
2 B
$ = SED Left Right
E-Puck speed [[
Set Speed
[}
STOP
|~ Draw path
LEDs Proximity sensors Joystick Odometry

Figure 1: The ePic2.1 Graphical Interface

4 THE GRAPHICAL INTERFACE 6

4.1 The Controller

One feature of the GUI is the implementation of a controller function to command the e-puck.
This function is located in the file controller.m and is initially empty. Once activated, it can be
programmed to add a behavior to the e-puck.

The controller acts as a Matlab script. As such, all the above functions can be used
to command the e-puck. The command update does not need to be called as it is done
automatically by the interface. It is nevertheless necessary to activate the sensors you need
for your controller before executing it.

The controller is a finite state machine. It begins in state 1 and executes its initialization.
Then it moves to state 2 or more to execute the body of the code. When stopped, it goes to
state -1 where it executes the final part of the code before going to state -2. If the controller
crashes for no precise reason, the interface detects it and stops its execution.

4.2 Sensor Captures

The interface always saves the values of the currently selected sensor. A box allows to choose
how many samples have to be kept. For instance, if 1 is selected, the last value will always
be kept in memory. When you want to transfer the saved values to Matlab, press the button
Save and the last readings will be transfered to Matlab’s workspace. In some cases, this
button will be disabled and colored in red. It means that the minimum amount of samples
requested has not been attained yet. When it will be so, the button will turn green. It is
possible to save an undefined number of samples by choosing Unlimited as Save buffer size.
The Reset button will empty the Save buffer.

4.3 Driving the Robot

To drive the robot, you have two choices using the interface. You can either set a speed for
each motor in the area Speed and press the button Set Speed or you can use the visual joystick
underneath. The white zone of the joystick allows you to set the motor speeds using a more
intuitive way. For instance, if you click the top middle of the white zone, the e-puck will run
at maximum speed in straight direction. If you press a bit on the right, it will start to turn
right. If you press below the button Stop it will run backward. The Stop button is used to
stop the robot.

4.4 The Camera

The camera area is composed of two displays. The first is the current view coming from the
robot while the one on the right is the same view after filtering. The camera works in two
modes: color or gray scale. The height and the width can be chosen but it should be carefully
considered as the e-puck is quite limited in memory. The value 40x40 is an adequate value.
The zoom factor describes a zoom out from the center of the image. By choosing 1, the image
will be very neat but very focused while 8 gives a wider view with a reduced quality. The
number that can be chosen are 1, 2, 4 and 8. After any modification of those values, the
button Set param. must be pressed to send them to the e-puck. When the button Capture is
pressed, a new snapshot is taken.

5 KNOWN ISSUES 7

5 Known issues

The initial connection can take quite a long time sometimes. This is due to the Windows
driver of some computers. Don’t despair and wait. It will connect finally. When closing the
connection, it is possible that Matlab crashes and has to be killed. This is also due to the
Windows driver and occur only on some machines.

6 Credits

ePic2 was developed at the Laboratory of Intelligent Systems located in the Ecole Polytech-
nique Fédérale de Lausanne in Switzerland by Yannick Weibel and Julien Hubert.

	Introduction
	Quickstart
	Matlab Commands
	The ePicKernel class
	Connection to the E-Puck
	Sending and Receiving Data
	Unrecommended method

	Commanding the e-puck
	Gathering information - get
	Controlling e-puck - set

	The Filters

	The Graphical Interface
	The Controller
	Sensor Captures
	Driving the Robot
	The Camera

	Known issues
	Credits

